カントール集合と有理数空間の位相的特徴づけ

今回は、次の二つの定理を証明します。

定理 A. (Brouwer) 完全不連結で孤立点をもたず空でないコンパクト距離空間は、カントール集合と同相である。

定理 B. (Sierpiński) 可算無限個の点からなり孤立点をもたない距離空間は、有理数全体の空間 \mathbb{Q} と同相である。

具体的な位相空間を、いくつかの簡単な位相的性質の組み合わせによって特徴づける定理には比較的簡単なものから、非常に難しいものまであります。「コンパクトで境界のない単連結な 3 次元多様体は 3 次元球面と同相である」というポアンカレ予想も、そのような定理の一種であるといえます。ここでは、最も簡単な部類に入ると思われる二つの古典的な特徴づけ定理を取り上げました。

PDF「カントール集合と有理数空間の特徴づけ」

カントール集合と有理数空間の位相的特徴づけ」への1件のフィードバック

コメントを残す

以下に詳細を記入するか、アイコンをクリックしてログインしてください。

WordPress.com ロゴ

WordPress.com アカウントを使ってコメントしています。 ログアウト /  変更 )

Google フォト

Google アカウントを使ってコメントしています。 ログアウト /  変更 )

Twitter 画像

Twitter アカウントを使ってコメントしています。 ログアウト /  変更 )

Facebook の写真

Facebook アカウントを使ってコメントしています。 ログアウト /  変更 )

%s と連携中